Basic Dynamic Analysis VMs and Sandboxes

The Need for Dynamic Analysis

- Static analysis has many limits, especially on packed malware
 - > Packing obscures metadata, strings, executable code

- Running malware exposes its behavior
 - How it interacts with filesystem, network, registry, etc

A Safe Analysis Environment

➤ It is very important to prepare an environment for safe dynamic analysis

- Need to set up VMs to run the malware on safely without infecting our host or allowing it contact with the outside world
- Some analysts run on "bare metal" machines that are airgapped and can be reverted easily
 - Why would this be advantageous?

Safe Malware Analysis Inside a VM

In order to analyze malware safely, VirtualBox's network settings need to be configured properly

Networking Mode	Host -> VM	VM -> Internet	VM -> Other VMs
Not Attached	X	X	X
NAT	X	✓	X
Bridged Adapter	✓	✓	✓
Internal Network	X	X	✓
Host-Only Adapter	✓	X	~

Snapshots

> Can save the state of a VM, and revert to it later

> Take one before you run malware on your VM

> Revert once you are done with your analysis

Sandboxes

> Safe, isolated environment that replicates an operating system

- > Automatically runs malware and reports on its behavior
 - Filesystem
 - Network connections
 - Registry / system configuration changes
 - Mutexes

Filesystem

- What files did the malware:
 - Read?
 - Create?
 - Modify?
 - Delete?

- Common malware behavior:
 - Copy itself to another location (especially to set up persistence)
 - Delete itself after running

Network

Network traffic generated by malware may be communications with a command and control (C&C) server

Malware often beacons to C&C at regular time intervals

- > Sandbox saves traffic in a packet capture (pcap) for analysis
 - It is important to consider false positives, because some activity (such as NTP) may look like C&C

Registry

 The Windows Registry is used to store much of the information and settings for software programs, hardware devices, user preferences, operating system configurations, and much more

- Malware often interacts with the registry in the following ways:
 - Query registry keys
 - Create registry keys
 - Modify registry keys
 - Delete registry keys

Persistence

Persistence – the ability to survive reboots

- Common registry keys used for persistence:
 - > HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run\
 - > HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
 - > HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
 - > HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\

Large list at https://www.andreafortuna.org/dfir/malware-persistence-techniques/

Mutexes

Global variable that provides locking for shared memory

- Although used for legitimate purposes, frequently used to prevent re-infecting a victim
 - Malware queries for a specific mutex
 - If it does not exist, infects system and creates that mutex
- > Can be unique indicators of compromise

Anti Sandbox techniques

Detecting virtualization

> Stalling malicious activity until sandbox times out

Detecting hooks (user level or kernel level)

> Prompting for user input / waiting for C&C response

> Sleep

Sandbox Demo!